Formatting Numeric Print Output

Earlier you saw the use of the Pr i Nt and pri Nt | N methods for printing strings to standard output (SySt €m out). Since all

numbers can be converted to strings (as you will see later in this lesson), you can use these methods to print out an arbitrary mixture of
strings and numbers. The Java programming language has other methods, however, that allow you to exercise much more control over
your print output when numbers are included.

The printf and format Methods

Thej ava. i 0 package includes a Pr i nt St r eamclass that has two formatting methods that you can use to

replace pri Nt and pri nt | n. These methods, f Or Mat and pri nt f , are equivalent to one another. The

familiar Sy St €m out that you have been using happens to be a Pr i nt St r eamobject, so you can

invoke Pr i nt St r eammethods on Syst em out . Thus, you can use f or mat orpri nt f anywhere in your code where
you have previously been using Pr i nt or pr i ntln.For example,

Systemout.format(.....);

The syntax for these two | ava. | 0. Pri nt St r eammethods is the same:

public PrintStreamformat(String format, Object... args)

where f Or mat is a string that specifies the formatting to be used and ar gS is a list of the variables to be printed using that
formatting. A simple example would be

System out.format (" The value of " + "the float variable is " +
"%, while the value of the " + "integer variable is %, " +
"and the string is %", floatVar, intVar, stringVar);

The first parameter, f Or At | is a format string specifying how the objects in the second parameter, ar gS, are to be formatted. The
format string contains plain text as well as format specifiers, which are special characters that format the arguments of (]Jj ect...
ar gs. (The notation (]Jj ect ... args iscalled varargs, which means that the number of arguments may vary.)

Format specifiers begin with a percent sign (%) and end with a converter. The converter is a character indicating the type of argument to
be formatted. In between the percent sign (%) and the converter you can have optional flags and specifiers. There are many converters,
flags, and specifiers, which are documented in] ava. uti | . For mat t er

Here is a basic example:

int i = 461012;
Systemout.format (" The value of i is: %@%", i);

The %@ specifies that the single variable is a decimal integer. The %4 is a platform-independent newline character. The output is:
The value of i is: 461012

The pr i ntf andf or mat methods are overloaded. Each has a version with the following syntax:
public PrintStreamformat(Locale |, String format, Object... args)

To print numbers in the French system (where a comma is used in place of the decimal place in the English representation of floating
point numbers), for example, you would use:

System out . f or mat (Local e. FRANCE,
"The value of the float " + "variable is %, while the " +
"value of the integer variable " + "is %, and the string is %%",
floatVvar, intVar, stringVar);

An Example

The following table lists some of the converters and flags that are used in the sample program, Test For nat . j ava, that follows
the table.

Convertersand FlagsUsed in Test For mat . j ava

Converter | Flag Explanation
d A decimal integer.
f A float.

A new line character appropriate to the
n platform running the application. You
should always us@n, rather thann.

A date & time conversion—locale-specific

B full name of month.
A date & time conversion—2-digit day of
td, te month. td has leading zeroes as needed, te
does not.
vty A date & time conversion—ty = 2-digit
4 year, tY = 4-digit year.
f A date & time conversion—hour in 12-
hour clock.
M A date & time conversion—minutes in 2
digits, with leading zeroes as necessary.
i A date & time conversion—locale-specific
P am/pm (lower case).
A date & time conversion—months in 2
tm .))
digits, with leading zeroes as necessary.
D A date & time conversion—date as
%tm%td %ty
08 Eight characters in width, with leading
zeroes as necessary.
+ Includes sign, whether positive or negative.
Includes locale-specific grouping
' characters.
- Left-justified..
3 Three places after decimal point.

10.3 | Ten characters in width, right justified,

with three places after decimal point.

The following program shows some of the formatting that you can do with f Or mat . The output is shown within double quotes in the
embedded comment:

i mport java.util.Cal endar;
import java.util.Local e;

public class TestFormat {

public static void main(String[] args) {
long n = 461012;

System out . format ("%%", n); /1 --> "461012"
System out. format ("%08d%", n); [l --> "00461012"
System out . f ormat (" %8d%", n); /[l --> " +461012"
System out . format ("% 8d%", n); [l --> " 461, 012"

System out . f ormat (" %+, 8d%W", n); // --> "+461,012"

doubl e pi = Math.Pl;

System out . format ("% %", pi); [l --> "3.141593"
System out . format ("% 3f %", pi); [l --> "3.142"
System out . format ("%0. 3f %", pi); [r--> " 3. 142"

Systemout.format ("% 10. 3f ", pi); [/ --> "3.142"
System out . f or mat (Local e. FRANCE,
"% 10. 4f %@Wm", pi); // --> "3, 1416"

Cal endar ¢ = Cal endar. getlnstance();
Systemout.format ("%B %e, %YW", c, c, c); // --> "My 29, 2006"

Systemout.format ("% : % M % pWm", c, ¢, c¢); [/ --> "2:34 ani
System out . fornmat ("% D", c); /[l --> "05/29/06"

}

Note: The discussion in this section covers just the basics of the f Or nat and pr i nt f methods. Further detail can be found in
the Basi ¢ | / Osection of the Essential trail, in the "Formatting” page.
Using St ri ng. f or mat to create strings is covered in Strings.

The DecimalFormat Class

You can use thej ava. t ext. Deci mal For mat class to control the display of leading and trailing zeros, prefixes and suffixes,
grouping (thousands) separators, and the decimal separator.DECi mal For mat offers a great deal of flexibility in the formatting of

numbers, but it can make your code more complex.
The example that follows creates a Deci mal For mat object, nyFor mat t er, by passing a pattern string to

the Deci mal For mat constructor. The f Or mat () method, whichDeci mal For mat inherits from Nunber For mat | is
then invoked by rryFor mat t er —it accepts adoubl € value as an argument and returns the formatted number in a string:

Here is a sample program that illustrates the use of Deci mal For mat :

i mport java.text.*;

public cl ass Deci mal For mat Deno {

static public void custonfFormat (String pattern, double value) {
Deci mal Format myFormatter = new Deci mal For mat (pattern);
String output = nyFormatter.format(val ue);
Systemout.println(value + " " + pattern + " " + output);

}

static public void main(String[] args) {

cust omfFor mat (" ###, ###. ###", 123456. 789) ;
cust onfor mat (" ###. ##", 123456. 789);
cust onfor mat (" 000000. 000", 123.78);
cust onfor mat (" $###, ###. #H##", 12345. 67);

The output is:

123456. 789 ###, ###. ### 123, 456. 789
123456. 789 ###. ## 123456. 79

123.78 000000. 000 000123.780
12345. 67 S$###, ###. ### $12, 345. 67

The following table explains each line of output.

Deci mal For mat . j ava Output
Value Pattern Output Explanation

The pound sign (#) denotes a digit, the comma is
123456.789 ### ### ### | 123,456.78% placeholder for the grouping separator, and the
period is a placeholder for the decimal separator.

Theval ue has three digits to the right of the
123456.789 ##t ## 123456.79 | decimal point, but theat t er n has only two.
Thef or mat method handles this by rounding up.

Thepat t er n specifies leading and trailing zercs,
123.78 000000.000 000123.78Mmecause the 0 character is used instead of the
pound sign (#).

The first character in theat t er n is the dollar
12345.67 | S #HH #H512,345.67 sign ($). Note that it immediately precedes the
leftmost digit in the formattedut put .

« Previous ¢ Trail « Next »

Your use of this page and all the material on pages under "The Java Tutorials" banner is subject to Problems with the examples? Try Compiling and Running the
these |legal notices. Examples: FAQs.

Copyright © 1995, 2015 Oracle and/or its affiliates. All rights reserved. Complaints? Compliments? Suggestions? Give us your feedback.

